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Abstract

An equation is presented to facilitate estimation of the production of the cosmopolitan cyclopoid  copepod
Oithona similis The egg hatching rate was studied from Arctic, subarctic  and temperate waters covering a 
temperature interval from -1 to 20.5 oC. Within this temperature range the hatching rate (HR) increased from 
0.03 to 0.42 d-1. Results from all experiments were fitted to a function HR (% d-1) = 4.2176+1.7545*T 
(r2=0.98; P< 0.0001). When combined with site-specific information on temperature, egg:female ratios and 
the carbon content of females and eggs, secondary production of this ubiquitous species can be readily 
estimated.

Introduction

Egg production of free spawning copepod species have routinely been used to estimate copepod production, 
assuming that adult female copepods do not grow, but rather allocate the ingested carbon into the 
production of eggs. The weight specific egg production rate (SEP) of the females is often assumed to equal 
the growth rate of the younger stages and the production can therefore be easily estimated from the SEP 
and the standing stock (but see Hopcroft & Roff, 1998, Sabatini & Kiørboe 1994).  While the SEP of free 
spawning copepods is generally estimated over a single 24 hour interval, this method can not be directly 
applied to egg carrying species that typically produce clutches of eggs less constantly and then carry the 
same clutch for several days. These include all cyclopoids, poecilostomatoids  and harpacticoids plus the 
important calanoid genera Pseudocalanus, Euchaeta, Clausocalanus that combined constitute a significant 
fraction of marine copepods.

Of the egg carrying marine copepods, the small cyclopoid Oithona similis is a cosmopolitan species with a 
wide geographical distribution, from the poles to equator (Nistida 1985, Mazzocchi et al. 1995). Where 
investigated, Oithona has been shown to be one of the most abundant marine copepod genera (Turner, 
1982; Paffenhöffer 1993, Calbet & Agusti 1999). Unfortunately the recommended use of nets with a mesh 
size of 200 µm for sampling of copepods (UNESCO 1968) still bias our knowledge about the quantitative 
importance of many small copepod species such as Oithona. Resent investigations using nets with smaller 
mesh size (e.g. 45 to 64 µm) or water bottles have documented that Oithona contributes significantly to the 
standing stock of copepods in many marine ecosystems (Paffenhöffer 1993, Gonzales & Smetacek 1994, 
Nielsen & Sabatini 1996, Hopcroft et al.. 1998). Knowledge about its production and potential grazing impact 
is therefore of key importance to the understanding of the productivity and dynamics of the Sea.

The population specific egg production rate (SEP, d-1) of egg carrying copepods can be accurately estimated 
by the egg-ratio method (Edmondson, 1971).  This method requires knowledge of the egg/female ratio of the 
population (i.e. including females not carrying eggs), the egg hatching rate (HR, d-1) at in situ temperature, 
and the carbon content of the egg and female:

SEP = (Egg /female) * HR * (egg C/ female C)

Sabatini & Kiørboe (1994) have previously estimated the relationship between carbon content and the size 
of both eggs and females for Oithona similis. The aim of this paper is to establish the quantitative 
relationship between temperature and egg hatching rate for Oithona similis to provide a simple method of 
estimating the production of this abundant copepod without routine experiments.

Results

Across the different systems, the environment spanned a broad range (Table 1).  The salinity at the different 
sites was the same (29.0-35 psu), while the temperature obviously increased from the arctic to the 
temperate regions. Chlorophyll varied an order of magnitude between locations, but in no systematic pattern 
with respect to water temperature. Egg size was comparable at all locations. 

The eggs in the sacs developed relatively synchronously until hatching. On several occasions we observed 
that nauplii escaped from the egg sacs within minutes of having hatched. In other cases hatching appeared 
to occur over as several hours, with nauplii frequently remaining attached to the female for some time by 
remnants of the opened egg sac. In general the hatching success was high  (> 95%). During the 
experiments no female mortality was observed, although during the Disko Bay and Gulf of Alaska cruises 
where some of the females were lost from the wells due to rough seas.

The egg hatching time was inversely related to the water temperature, decreasing from 25.7 d-1 to 2.8 d-1

across the temperature range tested  (-1.0 to 20.5 oC) (Figure 2). Several equations were fit to the data, 
many of which provided good overall statistical fit (Table 2).  However, for those models with 3 fitted 
parameters at least one parameter was not significant.  The linear models (Figure 3) gave the consistently 
better fit compared to the exponential models, however, the Belehrádeks model with exponent fixed at 2.05 
(McLaren et al. 1969) proved as satisfactory as the linear model and gave comparable fit.  We advocate the 
linear models between hatching rate (HR, % day-1) or hatching time (HT, in days) and temperature (T, °C) 
which are mathematically simpler:

HR = 4.2176+1.7545*T, r2 = 0.98, P < 0.0001, n=16

HT = (0.0464+0.0145*T) -1, r2 = 0.97, P <0.0001, n=16

Discussion

Of the egg carrying marine copepods, the cyclopoid Oithona similis exists over a wider range of 
temperatures and salinity than most other marine copepods from temperate brackish coastal water to 
subtropical oligotrophic oceans (Nistida 1985, Mazzocchi et al. 1995). In cold areas like the arctic and 
temperate regions, Oithona is often the most important winter copepod genus present, and reproduces year 
round in surface waters (Kiørboe & Nielsen 1994, Uye & Sano 1995).

One potential shortcoming of this method is that it presumes the animals incubated are randomly distributed 
throughout their egg-carrying cycle.  If egg-laying (and hatching) follow a strongly diel cycle (Hopcroft & Roff
1996, Ambler et al.. 1999), then there will be a bias introduced, creating a step-like pattern in the percentage 
hatching.  At cold temperatures, when hatching time is long, this causes relatively little error in the final 
estimation of hatching rate. If the method is applied in the tropics, it would appear necessary (and be 
logistically feasible) to observe both the production and hatching of clutches to estimate the hatching time 
(e.g. Hopcroft & Roff 1996).

Previous investigations of Oithona species hatching or development time cover a higher or smaller 
temperature range than this study e.g. Oithona davisa – 10 to 30 °C (Uye & Sano 1995, 1998) and Oithona 
similis – 4.5 to 14 °C (Eaton 1971). Eaton noted that that her value at 4.5°C might be suspect, as we have 
confirmed, limiting her reliable data to only 9 & 14 °C.  Thus, our hatching rate measurements at colder and 
extended temperatures, make the equations applicable for a much larger geographical range.

To our knowledge, this note is the first attempt to establish a general equation for estimation of hatching 
rates of this very important copepod covering the full range of temperatures from arctic to temperate waters. 
The applied multi-well technique is low cost, space efficient, and allows rapid handling of many replicates –
yielding an easy establishment of temperature-dependent hatching rate relationships for sac spawners. This 
facilitates routine estimation of productivity.  More importantly, for preserved finer-mesh samples that contain 
both females and their detached egg sacs, our equations provide a critical step that allows for prediction of 
secondary production of this abundant but often ignored component of the copepod community.
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Figure 1.  Location of the study sites.

Table 1 Range in surface salinity, temperature, chlorophyll a, female cephalothorax length ± SE and 
egg diameter ± SE the areas considered. Numbers in parenthesis is the number of measurements. 
 Northwater Disko Bay Greenland Sea Gulf of Alaska North Sea 
Temperature, 

in situ* 
-1.55 - -1.51  

-0.4     
5-7 
2 

7.3-0.4 
 -1.2 

5-15 
5-8 

14 
7 

Experimental 
temperature  

-1, 1,4 0.2, 4.5, 7.5 -0.8, 2.3, 4.2 5,10,16, 18.5, 
20.5 

12 

Salinity (PSU) 30.3-30.4 32.6-33.6 32.7-35.0 29.0-32.4 34-35 
Chlorophyll a 
(µg chl a l-1) 

4.1-5.0 1-3 0.3-1.0 0.73-2.0 0.1-0.5 

Female length 
(µm) 

477±5 
(83) 

441±9 
(229) 

473±3 
(106) 

454±6        
(28) 

532±26     
(440) 

Egg diameter  
(µm) 

67.2±1.5 
(35) 

58.3±0.4  
(165) 

63.1±0.4 
(439) 

64.5±1.1    
(36) 

56.9±0.9 
( 600) 

* If a thermocline was present, second line indicates the temperature below the thermocline. 

Table 2.  Statistical summary of different models examined for HR and HT vs. temperature. For the 
Belehrádeks models, exponent was fitted, or set at 2.05 (McLaren et al 1969). n=16, P<0.0001 in all cases 

  a (±S.E). b (±S.E.) c (±S.E.) r2 
Hatching rate     a+b*T 4.2176 (0.6721) 1.75451 (0.0665)   0.98 
vs. temperature (T)    a*e(b*T) 7.968 (0.7663) 0.0845 (0.0060)   0.94 
    c+a*e(b*T) 67.229 (43.211) 0.0214 (0.0114) -62.351 (46.6143) 0.98 
    a*(T+c)b 0.7027 (0.4981) 1.2655 (0.1954) 4.6412 (1.9087) 0.98 
    a*(T+c)2.05 0.0327 (0.0029)   12.793 (1.1072) 0.98 
Hatching time    (a+b*T)-1 0.0464 (0.0014) 0.0145 (0.0012)   0.97 
vs. temperature (T)    a*e(-b*T) 23.610 (0.9293) 0.2088 (0.0194)   0.95 
    c+a*e(-b*T) 19.942 (0.5414) 0.3107 (0.0277) 3.2955 (0.5414) 0.98 
    a*(T+c)-b 344.12 (444.29) 1.5759 (0.4258) 5.6103 (1.9311) 0.98 
    a*(T+c)-2.05 1504.5 (202.13)   7.6998 (0.4970) 0.98 

 

Figure 2. Oithona similis egg hatching experiments at 13 
different temperatures. Hatching rate (HR, % d-1), r2 and n 
(numbers of hatches) for the linear regression of cumulative 
hatching percentage vs. time are shown for each experiment. 

Figure 3. Oithona similis egg hatching rate a) and hatching time 
b) as function of temperature.


